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Ahatraet-This study illustrates the thermodynamic information that is being routinely overlooked by a 
pure fluid mechanics analysis. The integral analysis of the two-dimensional turbulent jet is used as an 
example. It is shown that even when the temperature difference between the nozzle fluid and the reservoir 
fluid is zero, the jet region is nonisothermal. At every position along the jet, the temperature rise becomes 
maximum when the entrainment coefficient assumes a value that is comparable with the value determined 
experimentally. Furthermore, it appears that the natural shape of the velocity and temperature profiles of 
the jet is the one that minimizes the total entropy generation rate. This study suggests that an important 
relationship exists between the empirical components of the pure-fluid-mechanics integral treatment, and 

the temperature and entropy generation extrema unveiled by the thermodynamic analysis 

INTRODUCTION 

THE traditional approach in the study of fluid flows 
in which the transfer of heat and mass is not an issue 
(i.e. in ‘pure’ fluid mechanics) is to overlook entirely 
the thermodynamic analysis of the flow. The objective 
of the present study is to bring to light the kind of 
info~ation-the the~odynamic aspect-that is 
being overlooked by the traditional method. This 
aspect serves as focus for an entire subfield in heat 
transfer today [l, 21. It will be shown that an inter- 
esting relationship exists between the empirical con- 
tent of the pure fluid mechanics treatment, and the 
temperature and entropy generation rate dist~butions 
that are revealed by the thermodynamic analysis. 

The thermodynamic facet of a traditional pure- 
fluid-mechanics treatment can be seen by reconsidering 
the classical example of the two-dimensional turbulent 
jet. Figure 1 shows that the jet is produced by a narrow 
slit of width D,, and that its slit-averaged velocity is 
tie The pressure of the fluid reservoir is uniform. At 
longitudinal distances x greater than a few slit widths, 
the time-averaged flow field is described by the vel- 
ocity components u and U, which must satisfy the time- 
averaged mass and momentum conservation equa- 
tions (see, for example, p. 283 of ref. [3]). 

(-Ve 1 

The jet flow region is being treated as ‘slender’, or 
of the boundary layer type (D << x): this is why the 
pressure gradient and longitudinal diffusion terms are 
absent from the momentum equation (2). 

One additional equation-the entrainment hypoth- 
esis-becomes a necessity in the integral analysis of 
the jet flow [4]. The analysis begins with assuming a 
certain u-profile shape, which is labeledf([) 

u = Z.&f([), < = ;, (3) 

and continues with integrating equations (1) and (2) 
across the jet region. It can be shown that this oper- 
ation yields two equations, respectively 

I&D = u;D, (5) 

in which the centerline velocity u,(x), the jet thickness 

RHS 

FIG. 1. Time-averaged two-dimensional turbulent jet, and system of coordinates. 
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NOMENCLATURE 

specific heat of incompressible liquid 
specific heat at constant pressure 
transversal length scale of jet flow region 
nozzle spacing size (Fig. 1) 
velocity and temperature profile shape, 
equations (3) and (18) 
specific enthalpy, time averaged 
specific enthalpy of reservoir fluid 

I, definite integrals, equations (6) and 

(21) 
specific entropy, time averaged 
specific entropy of reservoir fluid 
entropy generation rate in finite-length 
jet region, equation (28) 
time-averaged temperature 
centerline temperature 
centerline temperature rise, T, - T, 
temperature of reservoir fluid 
time-averaged longitudinal velocity 
centerline velocity 
longitudinal velocity through the nozzle 
tome-averaged transversal velocity 

-E’, entrainment velocity 
.‘i longitudinal coordinate 

Y transversal coordinate. 

Greek symbols 
I entrainment coefficient, equation (7) 

2, empirical entrainment coefficient, 
equation (15) 

x,pt optimum entrajnment coefEcient, 
equation (23) 

“J empirical constant, equation (13) 

EM momentum eddy diffusivity 

i dimensionless transversal coordinate, 

YID 
V kinematic viscosity 

P density. 

Superscripts and subscripts 
( _ ) dimensionless variables defined in 

equations (IO), (20) and (28) 

( ),,X maximum. 

scale D(x), and the entrainment velocity -c,(x) are to be determined empirically. The (uC, D) solution to 
unknown. The numerical coefficients I, and f, are equations (4) and (5) (obtained by integrating away 
shorthand for two integrals the values of which will from the virtual origin x = 0, where u, = co) is 
be compared later in Table 1 

1, 
I,2 

s 
rd I2 = _xy_ .f? d[. 

s 

uC = 4af, - C > 
_-Ii? ~ X 

f, = .f di, 
(8) 

(6) 
-7 

The two-equation system, equations (4) and (5) is a+ (9) 
clearly not sufficient for determining the three I 

unknowns uniquely. The classical way out of this 
difficulty is to use the entrainment hypothesis, that is, 

The dimensionless variables used above are defined 

the statement that the entrainment velocity is pro- 
by 

portional to the longitudinal velocity X 
z=--, 

-r1, = au, (7) Do 
&A, (10) 

% 
fi=; 

0 

in which the entrainment coefficient a is a constant such that fi = 1 (or ,f = I,/4a) represents the longi- 

Table I. The effect of the velocity and tem~rature profile shape on the total entropy g~neratjon rate 

Profile shape I, 12 1, I,lI:,” = .&.,,X 

Triangular,/= 1 - 151, /<I < 1 
.f= 0, fil > 1 

Trapezoidal,,f= 1, [[I < I 
/ = (a-[)/(0-l), I s: lil G u 
f= 0. I;] > u 

Top hat,,!= 1. /<I < I 
.f= 0, Iii ’ 1 

Parabolic,,f= l-<‘, /iI < 1 
.f’= 0, ICI > 1 

Gausdan,,f = exp (- { *) 

Exact,,f= I -tanh’c 

132 l/3 114 1.300 

lLlj2 l-1/3 l-l/4 1-1.3 

1 1 1 1 

213 S/is 16135 1.173 

=iQ (x/2)‘:z (n/3)“* 0.729 

2 413 16/15 0.693 
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tudinal location of the nozzle relative to the virtual 

origin. 
The classical similarity solution to the same prob- 

lem [5] (also pp. 291 and 292 of ref. [3]) covers more 
territory, in the sense that it produces not only the 
equivalent of equations (7) and (8) but also a solution 
for the shape of the u-profile 

f= 1 -tanh2 [. (11) 

This ‘exact’ solution requires a hypothesis of its own, 

namely the use of the mixing-length model 

(12) 

in which y is an empirical constant the recommended 

value of which is [6] 

y z 7.67. (13) 

In place of equation (8) for example, Gortler’s simi- 

larity solution (11) has 

(14) 

Comparing this with equation (S), and using equa- 
tions (6), (11) and (13) we conclude that the proper 
empirical value of the entrainment coefficient used in 
the integral analysis is 

g(e z 0.0367. (1% 

This introductory analysis shows that the entrain- 
ment hypothesis is the integral-solution equivalent of 
the mixing length model used in the earliest similarity 
solutions of free turbulent flows. Both approaches 
lead to the conclusion that the time-averaged flow 

region is wedge-shaped (i.e. that D is proportional 
to x, equation (9)) and that the centerline velocity 
decreases as x- . ‘/* The analysis is based on only two 
equations (mass, momentum) and one act of empiri- 
cism represented by the chosen value of cz. 

Critical to defining the objective of the present study 
was the observation that the preceding analysis has 

absolutely no use for thermodynamic considerations 
such as the first law (energy equation) and the second 
law. Indeed, the flows that are being subjected to 
mass-and-momentum-only analysis are sometimes 
referred to as ‘isothermal’. The objective of the work 
described next is to provide a more complete view of 
the flow, this time by taking into account also the first 
and second laws of thermodynamics. 

THE FIRST LAW OF THERMODYNAMICS 

Consider the first-law statement for the steady jet 
flow through the control volume of thickness dx, 
defined by the two planes drawn normal to the x-axis 
in Fig. 1 

=[h,++]&l;Xpudg. (16) 

The left-hand side of this equation-or the ‘LHS’ 
arrow on Fig. l-represents the net increase in the 

longitudinal flow of energy through the jet. The right- 
hand side (‘RHS’) accounts for the energy brought 

into the jet region by the entrainment process. On 
both sides of the equation, the local specific energy is 
the sum of the local time averaged enthalpy (h) and 
the local kinetic energy of the time averaged flow 

(u2/2). The kinetic energy contributions associated 
with time-averaged products of fluctuation velocity 
components are assumed negligible relative to the 
kinetic energy of the main stream (u*/2). 

A useful alternative to equation (16) is 

(-urn)’ d o; 
=pdx _ 

s 2 io 
pudy (17) 

in which we can set h-h, = c,,(T- T,), because the 

pressure is uniform throughout the jet flow region. If 
the fluid behaves as an incompressible liquid, then 
h -h, = c( T- T,), in which c is the lone specific heat 
of the liquid. In what follows, cP (or c) is treated as 

a constant, in other words, it is assumed that the 
temperature excursion T-T, is sufficiently small 
when compared with the absolute temperature T, . 

Finally, for simplicity it is assumed that the time- 

averaged temperature profile has the same shape and 
transversal length scale as the longitudinal velocity 
profile 

T- T, = (K-Z-~)./“(i). (18) 

In this equation, T,(x) is the temperature distribution 
along the jet centerline. 

Method 1 
There are two ways of pursuing the energy con- 

servation requirement embodied in equation (17). The 
first is the ‘consistent’ approach of applying the 
entrainment hypothesis (7) one more time, in order to 
evaluate the leading factor on the right-hand side of 
equation (17). The end result of the ensuing analysis is 
an expression for the centerline temperature difference 

0. =~[($J’-&] (19) ‘ 

in which AFc is dimensionless 

(20) 

and I, is a third constant dictated by the profile shape 
function (Table 1) 



410 A. BEJAN 

0.05 
t 

Fto. 2. The optimum entrainment coefficient for maximum temperature rise on the jet centerline. 

(21) 

Equation (19) was obtained by integrating equation 
(17) once in X, and making the statement that the 
jet fluid is isothermal in the nozzle cross-section, i.e. 
AFC=Oatb= 1. 

The relationship between temperature rise (AT& 
entrainment coefficient (x), and longitudinal position 
(Z) is described by equation (19). Most interesting is 
that at a fixed longitudinal position the centerline 
temperature reaches a maximum value (AFC,,,,) for a 

special value of the entrainment coefficient (tl,J. 
These values can be determined by maximizing the 

right-hand side of equation (19) numerically : the 
results are indicated by the dash curves in Fig. 2. This 
figure was constructed using the I,.,,, constants of the 
exact jet profile (Table I). 

The maximum centerline temperature is practically 
independent of longitudinal position, AT&,,, g 0.15, 
while xoPt decreases monotonically as .? increases. It is 
important to note that a,,,, is of the same order of 

magnitude as the empirical entrainment coefficient 
(TV = 0.0367). This observation is particularly valid at 
longitudinal positions greater than several slit widths, 
i.e. in the self-similar region of the jet, which is respon- 
sible for the measurement of a,. 

Method 2 
With regard to the energy content of the entrained 

flow, it can also be argued that since the fluid reservoir 
is at rest, the kinetic energy part ( - ~,)‘/2 should be 
zero in equations (16) and (17). A thermodynamicist 
not familiar with the entrainment hypothesis (7) will 
most likely follow this approach. In this case, the 
centerline temperature distribution that replaces 
equation (19) is 

A?-C=:;[(4!$-4&]. (22) 

This time, the optimum entrainment coefficient that 

maximizes the centerline temperature at any given .f 

can be determined in closed form 

1, 
%p, = y (23) 

These results are represented by the solid curves in 
Fig. 2, again, by using the I,,?,3 constants of the exact 
jet profile. There is little difference between the present 
results and those derived based on Method 1. In fact, 
the two methods lead to practically the same clCIPt and 
AFC,,,, values in the downstream region beyond sev- 
eral slit widths, reinforcing the conclusion that the 

optimum CI that maximizes AfC is of the same order 
of magnitude as the empirical value CI,. 

This conclusion is backed further by Fig. 3, which 
shows the actual centerline temperature of the jet, as 
a function of .?. The single curve in this figure rep- 
resents the superposition of equations (19) and (22) 
in which c( = a, and I,,Z,i are the constants listed for 
the exact profile in Table 1. In this case, the nozzle is 
located at .i- = 13.6 away from the virtual origin, and 
the theoretical maximum centerline temperature is 
AT_,,,, = 0.15, cf. equation (24). 

Figure 3 shows that the actual centerline tem- 
perature of the jet is nearly the same as AFC “,‘~* for a 
long section of the jet, beyond some distance down- 

stream from the nozzle. This observation has its expla- 
nation in the lower part of Fig. 2, in which the theor- 
etical coefficient tlop, was found to be equal to, or 
comparable with the empirical value a,. In conclusion, 
the introduction of an empirical parameter (c() in the 
pure fluid mechanics treatment of the jet problem is 

accompanied by an extremum (A~C.,J in the first- 
law analysis of the same flow. 

THE SECOND LAW OF THERMODYNAMICS 

The preceding conclusions were based on the first- 
law analysis of the jet region. With reference to the 
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FIG. 3. The effect of .? on the actual centerline temperature distribution (U = a,). 

control volume of thickness dx defined in Fig. 1, the 

second law states that the rate of entropy generation 
is non-negative 

d&c, d x s d 

d.u = d.u 7, 
pusdy-s,z ; 

s 
pudy>O. 

x 

(25) 

The two terms that appear on the right-hand side 
of equation (25) are associated respectively with the 
‘LHS’ and ‘RHS’ arrows drawn on Fig. 1. 

When the two integrals of equation (25) are com- 
bined, the local time-averaged entropy change (s--s,) 
appears as a factor in the integrand. This group can 
be replaced approximately by 

s--s, 2 $(7-T,) (26) 
I 

because the pressure is uniform and the temperature 
rise is negligible relative to the absolute temperature 
(see the discussion under equation (17)). Assuming 
further that the temperature and velocity profiles are 
described by the samef([), equation (18) the entropy 
generation rate (25) can be expressed as 

where 

(27) 

Integrating equation (27) from the nozzle (where 
ApC = 0) to any 1 situated downstream from the 

nozzle yields 

(29) 

Note that the physical (dimensional) entropy gen- 
eration rate S,,, listed in equation (28) represents the 
rate of entropy generation in the jet section (finite 
control volume) contained between the plane of the 
nozzle and a particular constant-.x plane situated 
downstream. 

Equation (29) can be combined with the results 
obtained previously for I&, 0” and AFC, in order to 
determine the ways in which tl, 1 and the profile shape 
f’(i) influence the rate of entropy generation. In the 
case of AFC, we have a choice between equations (19) 

0 20 40 60 80 100 
x 

FIG. 4. The effect of 1 and profile shape on the total entropy generation rate (a = c(,) 
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and (12) ; the following expression is based on equa- 

tion (22): 

and shows that .!&, increases monotonically as r 

and .\’ increase. The .\1 dcpendencc is illustrated in 
Fig. 4. which was drawn using the empirical entrain- 

ment coefficient. s( = z,. The entropy generation rate 

approaches a ceiling value .$Cn,,,,ilk as the length of the 
jet becomes considerably greater than the distance 

from the virtual origin to the nozzle, 1 >> 1,;4a 

Figure 4 and equation (31) show that the entropy 
generation rate distribution depends on the shape of 

the velocity and temperature profile, f’(i). Recall that 
in the integral method employed throughout this 
paper we have the freedom to select any profile shape 

that is ‘reasonable’ (i.e. one that satisfies the con- 
ditions ,f(O) = 1, ,f”(O) = 0, f’( k X) = 0). In the case 
of the jet of Fig. 1 we have also the luxury to know the 

‘exact’ profile supplied by Giirtler’s solution, equation 
(I I). Table I shows a compilation of reasonable pro- 
files, ranging from the piecewise linear (top hat, trap- 

ezoidal, triangular) to the bell-shaped profiles that are 
being used routinely in integral jet analyses. The table 
shows that the group l,/Zzi2 = &,,,,,,.,, decreases as the 
shape ,f’([) becomes more reasonable, that is, more 

like the shape revealed by time-averaged measure- 
ments. The smallest value of the group Ii/I;” cor- 
responds to the exact profile (I I). The Gaussian 
profile, which is often used to correlate jet velocity 
and temperature measurements, yields a &cn,m.,n value 
that is only 5 % greater than that of the exact profile. 

On the basis of the evidence assembled in Table I, 
it can be argued that the proper velocity and tem- 
perature profile shape is the one that minimizes the 
total entropy generation rate of a jet of finite length. 

Other reasonable profile shapes can be tried and 
added to Table I. in order to strengthen or refute this 

argument. 

CONCLUSIONS 

The objective of this study has been to investigate 
the thermodynamic characteristics of a traditional 
‘isothermal’ forced flow configuration, that is, to com- 
olete the missing part of the traditional pure-fluid- 

mechanics treatment. Using the two-dimensional tur- 
bulent jet as an example, we saw that the empirical 
clemcnts of the traditional integral analysis (the 
coefficient x and the profile .f’([)) have intcrcsting 
extrema as counterparts in the first-law and sccond- 
law analyses of the same flow : 

(1) The maximum temperature rise at a fixed .\’ on 

the jet centerline corresponds to a certain value of the 
entrainment coefficient, which is comparable with the 
empirical value xC (Figs. 2 and 3). 

(2) The observed shape of the velocity and tem- 
perature profiles corresponds to the smallest total 
entropy generation rate (Table I, Fig. 4). 

The present study is important for two reasons. 

First. it unveils the thermodynamic picture that is 
being overlooked entirely by a pure-fluid-mechanics 

analysis, which often relies on empiricism in order to 
produce a solution. This comment is not offered as 
criticism of the classical fluid mechanics work, rather. 
it is a thought that future analysts may benefit from 
knowing precisely what is being overlooked when a 
new problem is attacked by relying on the traditional 

method. 
The second reason why I found the present subject 

interesting enough to pursue it, is the correspondence 
that appears to exist between the empirical aspect to 
the pure fluid mechanics treatment, and the tem- 
perature and entropy generation extrema of the thcr- 
modynamic analysis. This correspondence deserves 
further study, for example, by focusing on other basic 

flow configurations. 
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THERMODYNAMIQUE DUN ECOULEMENT ISOTHERME : LE JET TURBULENT 
BIDIMENSIONNEL 

R&nn&Cette etude illustre l’information thennodynamique qui est habituellement negligee dans la 
mecanique des fluides classiques. L’analyse integrale d’un jet bidimensionnel est utilisee comme exemple. 
On montre que meme quand la difference de temperature entre le nez de la tuyere et le fluide ambiant est 
nulle, le jet lui-m&me n’est pas isotherme. A toute position le long du jet, I’elevation de temperature est 
maximale quand le coefficient d’entrainement prend une valeur comparable avec la valeur determinee 
experimentalement. I1 apparait que la forme naturelle des profils de vitesse et de temperature du jet est 
celle qui minimise le taux de creation d’entropie. Cette etude suggere qu’il existe une relation importante 
entre les composantes empiriques du traitement de la mecanique des fluides classiques et les extrema de 

temperature et d’entropie degages par la thermodynamique. 

THERMODYNAMIK EINER “ISOTHERMEN” STROMUNG : DER 
ZWEIDIMENSIONALE TURBULENTE STRAHL 

Zusammenfassung-Die vorliegende Arbeit veranschaulicht die thermodynamische Information, welche 
iiblicherweise bei einer Untersuchung der Stromungsmechanik reiner Stoffe iibersehen wird. Als Beispiel 
wird die integrale Berechnung eines zweidimensionalen turbulenten Strahls verwendet. Dabei zeigt sich, 
da5, selbst wenn keine Temperaturdifferenz zwischen dem Fluid in der Diise und demjenigen im Reservoir 
besteht, die Strahlstromung nicht isotherm ist. An jeder Stelle des Strahls erreicht der Temperaturanstieg 
ein Maximum, wenn der Entrainment-Koeffizient einen Wert annimmt, der dem experimentell ermittelten 
vergleichbar ist. AuDerdem stellt sich heraus, da5 die natiirliche Form der Geschwindigkeits- und Tem- 
peraturprofile des Strahls einem Minimum der Gesamtentropie-Erzeugungsrate entspricht. Als SchluD- 
folgerung ergibt sich, da5 zwischen den empirischen Komponenten der integralen Behandlung der Flu- 
idmechanik und den Extrema der Temperatur und der Entropieerzeugung ein wichtiger Zusammenhang 

besteht. 

TEPMO~MHAMMKA “MSOTEPMkf9ECKOI’0” TE’IEHWR: ABYMEPHAIl 
TYP6YJIEHTHAII CI-PYX 

~IIplieoLUrrcs AtlHII6Ie no TephlonHH-e, o6wlsio He ywwbmaewe B TCOpCTIWCKOii Ill& 

pommamme. B Kawcrne npwrepa ECXIOJIM~~TCX ~rptun.Hbdi aaaw3 aey~epaol q@yneaTlroir 
crpya. IIora3a~0, PTO naxe npa aynesoti pa3~ocu TeMnepaTyp rdezqy m-m B come E pe3ep 

Byape 06MCTb ~~pyihi0r0 TePemtK mwrCK mi3oTepm%CKOti. B KWO* Tome BnOm crpyu ~OCT 

TehfmpaTypblcraaoBmCxhcm ~b~,KOrnaKO~~eHTnepeHocanp~aeT3Ha¶eHaC,conoc- 

TaBEMOC C 3KCII~EMeIiTWlblibIM. KpoMe TOrO, OKKXNWTCK, 910 k%lECTBeIiHU I#OpMK CKOpOCTHOrO H 

TeMnepaTypHoro npoQu.nel crpya MEHliME3~)VI IlOJQ’IOCKOpCCTb lIpOE3BO~~Ba3HTpOllEE.~~~O- 

naraexn, 9~0 CyurecrnyeT CBK3b t4enny xmnipBpecI(~~~ KormoHemam mmerpamHor0 a~anma 

YI!CTO~~~H~P~~MEKEE 3Knc+peMyMaMH TeMnepalypbl.~npo~~o~~3arpo~,nony9e~ np~ 
Tephfonmiah4mecxoh4ammi3e. 


